SAS-6 is a Cartwheel Protein that Establishes the 9-Fold Symmetry of the Centriole
نویسندگان
چکیده
Centrioles consist of nine-triplet microtubules arranged in rotational symmetry. This structure is highly conserved among various eukaryotic organisms and serves as the base for the ciliary axoneme. Recently, several proteins such as SAS-6 have been identified as essential to the early process of centriole assembly, but the mechanism that produces the 9-fold symmetry is poorly understood. In C. elegans and Drosophila, SAS-6 has been suggested to function in the formation of a centriolar precursor, a central tube that then assembles nine-singlet microtubules on its surface. However, the generality of the central tube is not clear because in many other organisms, the first structure appearing in the centriole assembly is not a tube but a flat amorphous ring or a cartwheel-a structure with a hub and nine radiating spokes. Here we show that in Chlamydomonas the SAS-6 protein localizes to the central part of the cartwheel and that a null mutant of SAS-6, bld12, lacks that part. Intriguingly, this mutant frequently has centrioles composed of 7, 8, 10, or 11 triplets in addition to 9-triplet centrioles. We presume that, in many organisms, SAS-6 is an essential component of the cartwheel, a structure that stabilizes the 9-triplet structure.
منابع مشابه
Self-assembling SAS-6 multimer is a core centriole building block.
Centrioles are conserved microtubule-based organelles with 9-fold symmetry that are essential for cilia and mitotic spindle formation. A conserved structure at the onset of centriole assembly is a "cartwheel" with 9-fold radial symmetry and a central tubule in its core. It remains unclear how the cartwheel is formed. The conserved centriole protein, SAS-6, is a cartwheel component that function...
متن کاملNative Architecture of the Centriole Proximal Region Reveals Features Underlying Its 9-Fold Radial Symmetry
BACKGROUND Centrioles are cylindrical microtubule-based structures whose assembly is critical for the formation of cilia, flagella, and centrosomes. The centriole proximal region harbors a cartwheel that dictates the 9-fold symmetry of centrioles. Although the cartwheel architecture has been recently analyzed, how it connects to the peripheral microtubules is not understood. More generally, a h...
متن کاملStructure of the SAS-6 cartwheel hub from Leishmania major
Centrioles are cylindrical cell organelles with a ninefold symmetric peripheral microtubule array that is essential to template cilia and flagella. They are built around a central cartwheel assembly that is organized through homo-oligomerization of the centriolar protein SAS-6, but whether SAS-6 self-assembly can dictate cartwheel and thereby centriole symmetry is unclear. Here we show that Lei...
متن کاملSAS-6 oligomerization: the key to the centriole?
Centrioles are highly ordered structures that organize two key cellular organelles: the centrosome and the cilium. Defects in both organelles are now firmly linked to a wide variety of human diseases1. Centrioles are composed of nine blade-like microtubule triplets, arranged at the end of nine spokes that radiate from a central hub (Fig. 1a). The central hub and spokes are collectively referred...
متن کاملStructural Basis of the 9-Fold Symmetry of Centrioles
The centriole, and the related basal body, is an ancient organelle characterized by a universal 9-fold radial symmetry and is critical for generating cilia, flagella, and centrosomes. The mechanisms directing centriole formation are incompletely understood and represent a fundamental open question in biology. Here, we demonstrate that the centriolar protein SAS-6 forms rod-shaped homodimers tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 17 شماره
صفحات -
تاریخ انتشار 2007